pub_matsui

松井・発表論文(2015年以前)

[原著論文]

(1)      “2,5-Bis(1′,3′-dithiol-2′-ylidene)-1,3,4,6,-tetrathia-pentalene and its related unsymmetrical donors”

Misaki, Y., Matsui, T., Kawakami, K., Nishikawa, H., Yamabe, T., and Shiro, M.

Chem. Lett. (1993) 1337-1340.

 

(2)      “Preparation, crystal structure and electrical properties of dimethyl substituted unsymmetrical 2,5-bis(1′,3′-dithiol-2′-ylidene)-1,3,4,6-tetrathia-pentalenes”

Misaki, Y., Kawakami, K., Matsui, T., Yamabe, T., and Shiro, M.

J. Chem. Soc., Chem. Commun. (1994) 459-460.

 

(3)      “Synthesis and Properties of Bis-Fused TTF Donors”

Misaki, Y., Matsui, T., Kawakami, K., Fujiwara, H., Yamabe, T., Mori, T., Mori, H., Tanaka, S., and Shiro, M.

Syn. Metals (1995) 70, 1149-1150.

 

(4)      “Preparation and reactions of myoglobin mutants bearing both proximal cysteine ligand and hydrophobic distal cavity: protein models for the active site of P-450”

Matsui, T., Nagano, S., Ishimori, K., Watanabe, Y., and Morishima, I.

Biochemistry (1996) 35, 13118-13124.

 

(5)      “Conversion of myoglobin into a highly stereospecific peroxygenase by the L29H/H64L mutation”

Ozaki, S., Matsui, T., and Watanabe, Y.

J. Am. Chem. Soc. (1996) 118, 9784-9785.

 

(6)      “Conversion of myoglobin into a peroxygenase: A catalytic intermediate of sulfoxidation and epoxidation by the F43H/H64L mutant”

Ozaki, S., Matsui, T., and Watanabe, Y.

J. Am. Chem. Soc. (1997) 119, 6666-6667.

 

(7)      “On the formation and reactivity of compound I of the His-64 myoglobin mutants”

Matsui, T., Ozaki, S., and Watanabe, Y.

J. Biol. Chem. (1997) 272, 32735-32738.

 

(8)      “Effects of the arrangement of a distal histidine on regioselectivity of the coupled oxidation of sperm whale myoglobin mutants”

Murakami, T., Morishima, I., Matsui, T., Ozaki, S., and Watanabe, Y.

Chem. Commun. (1998) 773-774.

 

(9)      “Asymmetric oxidation catalyzed by myoglobin mutants”

Ozaki, S., Yang, H.-J., Matsui, T., Goto, Y., and Watanabe, Y.

Tetrahedron: Asymmetry (1999) 10, 183-192.

 

(10)    “Effects of the arrangement of a distal catalytic residue on regioselectivity and reactivity in the coupled oxidation of sperm whale myoglobin mutants”

Murakami, T., Morishima, I., Matsui, T., Ozaki, S., Hara, I., Yang, H.-J., and Watanabe, Y.

J. Am. Chem. Soc. (1999) 121, 2007-2011.

 

(11)    “Mechanisms of sulfoxidation catalyzed by high-valent intermediates of heme enzymes: Electron transfer vs oxygen transfer mechanism”

Goto, Y., Matsui, T., Ozaki, S., Watanabe, Y., and Fukuzumi, S.

J. Am. Chem. Soc. (1999) 121, 9497-9502.

 

(12)    “Effects of the location of distal histidine in the reaction of myoglobin with hydrogen peroxide”

Matsui, T., Ozaki, S., Liong, E., Phillips, G. N., Jr., and Watanabe, Y.

J. Biol. Chem. (1999) 274, 2838-2844.

 

(13)    “Formation and catalytic roles of compound I in the hydrogen peroxide-dependent oxidations by His64 myoglobin mutants”

Matsui, T., Ozaki, S., and Watanabe, Y.

J. Am. Chem. Soc. (1999) 121, 9952-9957.

 

(14)    “Unusual role of Tyr588 of neuronal nitric oxide synthase in controlling substrate specificity and electron transfer”

Sato, Y., Sagami, I., Matsui, T., and Shimizu, T.

Biochem. Biophys. Res. Commun. (2001) 281, 621-626.

 

(15)    “Peroxynitrite isomerization catalyzed by His64 myoglobin mutants”

Herold, S., Matsui, T., and Watanabe, Y.

J. Am. Chem. Soc. (2001) 123, 4085-4086.

 

(16)    “Molecular engineering of myoglobin: The improvement of oxidation activity by replacing Phe-43 with tryptophan”

Ozaki, S., Hara, I., Matsui, T., and Watanabe, Y.

Biochemistry (2001) 40, 1044-1052.

 

(17)    “Unusual cyanide bindings to a heme-regulated phosphodiesterase from Escherichia coli: Effect of Met95 mutations”

Watanabe, M., Matsui, T., Sasakura, Y., Sagami, I., and Shimizu, T.

Biochem. Biophys. Res. Commun. (2002) 299, 169-172.

 

(18)    “Characterization of a direct oxygen sensor heme protein from Escherichia coli. Effects of the heme redox states and mutations at the heme-binding site on catalysis and structure”

Sasakura, Y., Hirata, S., Sugiyama, S., Suzuki, S., Taguchi, S., Watanabe, M., Matsui, T., Sagami, I., and Shimizu, T.

J. Biol. Chem. (2002) 277, 23821-23827.

 

(19)    “Characterization of Met95 mutants of a heme-regulated phosphodiesterase from Escherichia coli. Optical absorption, magnetic circular dichroism, circular dichroism, and redox potentials”

Hirata, S., Matsui, T., Sasakura, Y., Sugiyama, S., Yoshimura, T., Sagami, I., and Shimizu, T.

Eur. J. Biochem. (2003) 270, 4771-4779.

 

(20)    “Molecular engineering of myoglobin: Influence of residue 68 on the rate and the enantioselectivity of oxidation reactions catalyzed by H64D/V68X myoglobin”

Yang, H. J., Matsui, T., Ozaki, S., Kato, S., Ueno, T., Phillips, G. N., Jr., Fukuzumi, S., and Watanabe, Y.

Biochemistry (2003) 42, 10174-10181.

 

(21)    “Kinetic isotope effects on the rate-limiting step of heme oxygenase catalysis indicate concerted proton transfer/heme hydroxylation”

Davydov, R., Matsui, T., Fujii, H., Ikeda-Saito, M., and Hoffman, B. M.

J. Am. Chem. Soc. (2003) 125, 16208-16209.

 

(22)    “Crystal structure of the dioxygen-bound heme oxygenase from Corynebacterium diphtheriae: Implications for heme oxygenase function”

Unno, M., Matsui, T., Chu, G. C., Couture, M., Yoshida, T., Rousseau, D. L., Olson, J. S., and Ikeda-Saito, M.

J. Biol. Chem. (2004) 279, 21055-21061.

 

(23)    “Proton transfer at helium temperatures during dioxygen activation by heme monooxygenases”

Davydov, R., Chemerisov, S., Werst, D. E., Rajh, T., Matsui, T., Ikeda-Saito, M., and Hoffman, B. M.

J. Am. Chem. Soc. (2004) 126, 15960-15961.

 

(24)    “Binding of oxygen and carbon monoxide to a heme-regulated phosphodiesterase from Escherichia coli: Kinetics and infrared spectra of the full-length wild-type enzyme, isolated PAS domain, and Met-95 mutants”

Taguchi, S., Matsui, T., Igarashi, J., Sasakura, Y., Araki, Y., Ito, O., Sugiyama, S., Sagami, I., and Shimizu, T.

J. Biol. Chem. (2004) 279, 3340-3347.

 

(25)    “Mechanistic studies of the isomerization of peroxynitrite to nitrate catalyzed by distal histidin e metmyoglobin mutants”

Herold, S., Kalinga, S., Matsui, T., and Watanabe, Y.

J. Am. Chem. Soc. (2004) 126, 6945-6955.

 

(26)    “Roles of distal Asp in heme oxygenase from Corynebacterium diphtheriae, HmuO: A water-driven oxygen activation mechanism””

Matsui, T., Furukawa, M., Unno, M., Tomita, T., and Ikeda-Saito, M.

J. Biol. Chem. (2005) 280, 2981-2989.

 

(27)    “O2– and H2O2-dependent verdoheme degradation by heme oxygenase: Reaction mechanisms and potential physiological roles of the dual pathway degradation”

Matsui, T., Nakajima, A., Fujii, H., Mansfield Matera, K., Migita, C. T., Yoshida, T., and Ikeda-Saito, M.

J. Biol. Chem. (2005) 280, 36833-36840.

 

(28)    “Design of metal cofactors activated by a protein-protein electron transfer system”

Ueno, T., Yokoi, N., Unno, M., Matsui, T., Tokita, Y., Yamada, M., Ikeda-Saito, M., Nakajima, H., and Watanabe, Y.

Proc. Natl. Acad. Sci. U.S.A. (2006) 103, 9416-9421.

 

(29)    “Time-resolved small-angle X-ray scattering investigation of the folding dynamics of heme oxygenase: Implication of the scaling relationship for the submillisecond intermediates of protein folding”

Uzawa, T., Kimura, T., Ishimori, K., Morishima, I., Matsui, T., Ikeda-Saito, M., Takahashi, S., Akiyama, S., and Fujisawa, T.

J. Mol. Biol. (2006) 357, 997-1008.

 

(30)    “Compound I of heme oxygenase cannot hydroxylate its heme meso-carbon”

Matsui, T., Kim, S. H., Jin, H., Hoffman, B. M., and Ikeda-Saito, M.

J. Am. Chem. Soc. (2006) 128, 1090-1091.

 

(31)    “Distinct reaction pathways followed upon reduction of oxy-heme oxygenase and oxy-myoglobin as characterized by Mössbauer spectroscopy”

Garcia-Serres, R., Davydov, R. M., Matsui, T., Ikeda-Saito, M., Hoffman, B. M., and Huynh, B. H.

J. Am. Chem. Soc. (2007) 129, 1402-1412.

 

(32)    “Bach1, a heme-dependent transcription factor, reveals presence of multiple heme binding sites with distinct coordination structure”

Hira, S., Tomita, T., Matsui, T., Igarashi, K., and Ikeda-Saito, M.

IUBMB Life (2007) 59, 542-551.

 

(33)    “Ligand design for the improvement of stability of metal complex•protein hybrids”

Yokoi, N., Ueno, T., Unno, M., Matsui, T., Ikeda-Saito, M., and Watanabe, Y.

Chem. Commun. (2008) 229-231.

 

(34)    “Alkyl peroxides reveal the ring opening mechanism of verdoheme catalyzed by heme oxygenase”

Matsui, T., Omori, K., Jin, H., and Ikeda-Saito, M.

J. Am. Chem. Soc. (2008) 130, 4220-4221.

 

(35)    “Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes”

Du, Z., Unno, M., Matsui, T., Ikeda-Saito, M., and La Mar, G. N.

J. Inorg. Biochem. (2010) 104, 1063-1070.

 

(36)    “Enzymatic ring-opening mechanism of verdoheme by the heme oxygenase: a combined X-ray crystallography and QM/MM study”

Lai, W., Chen, H., Matsui, T., Omori, K., Unno, M., Ikeda-Saito, M., and Shaik, S.

J. Am. Chem. Soc. (2010) 132, 12960-12970.

 

(37)    “Heme regulates B-cell differentiation, antibody class switch, and heme oxygenase-1 expression in B cells as a ligand of Bach2”

Watanabe-Matsui, M., Muto, A., Matsui, T., Itoh-Nakadai, A., Nakajima, O., Murayama, K., Yamamoto, M., Ikeda-Saito, M., and Igarashi, K.

Blood (2011) 117, 5438-5448.

 

(38)    “A heme degradation enzyme, HutZ, from Vibrio cholerae

Uchida, T., Sekine, Y., Matsui, T., Ikeda-Saito, M., and Ishimori, K.

Chem. Commun. (2012) 48, 6741-6743.

 

(39)    “A new way to degrade heme: The Mycobacterium tuberculosis enzyme MhuD catalyzes heme degradation without generating CO”

Nambu, S., Matsui, T., Goulding, C. W., Takahashi, S., and Ikeda-Saito, M.

J. Biol. Chem. (2013) 288, 10101-10109.

 

(40)    “Heme degradation by Staphylococcus aureus IsdG and IsdI liberates formaldehyde rather than carbon monoxide”

Matsui, T., Nambu, S., Ono, Y., Goulding, C. W., Tsumoto, K., Ikeda-Saito, M.

Biochemistry (2013) 52, 3025-3027.

 

[総説・解説]

(41)    “合成モデルおよび人工変異酵素を用いたヘム酵素による酸素活性化機構の解明 —— 人工ヘム酵素への第一歩”

渡辺芳人, 松井敏高

有機合成化学協会誌 (1996) 54, 1045-1054.

 

(42)    “Rational molecular design of a catalytic site: Engineering of catalytic functions to the myoglobin active site framework”

Ozaki, S., Matsui, T., Roach, M. P., and Watanabe, Y.

Coord. Chem. Rev. (2000) 198, 39-59.

 

(43)    “Investigations of the roles of the distal heme environment and the proximal heme iron ligand in peroxide activation by heme enzymes via molecular engineering of myoglobin”

Ozaki, S., Roach, M. P., Matsui, T., and Watanabe, Y.

Acc. Chem. Res. (2001) 34, 818-825.

 

(44)    “Structure and catalytic mechanism of heme oxygenase”

Unno, M., Matsui, T., and Ikeda-Saito, M.

Nat. Prod. Rep. (2007) 24, 553-570.

 

(45)    “Heme oxygenase reveals its strategy for catalyzing three successive oxygenation reactions”

Matsui, T., Unno, M., and Ikeda-Saito, M.

Acc. Chem. Res. (2010) 43, 240-247.

 

(46)    “Dioxygen activation for the self-degradation of heme: reaction mechanism and regulation of heme oxygenase”

Matsui, T., Iwasaki, M., Sugiyama, R., Unno, M., and Ikeda-Saito, M.

Inorg. Chem. (2010) 49, 3602-3609.

 

(47)    “ヘム分解における酸素活性化: 活性酸素の有効利用”

松井敏高

生物物理 (2011) 51, 132-133.

 

(48)    “金属タンパク質のX線結晶構造解析:ヘム分解酵素の反応中間体”

海野昌喜, 松井敏高, 齋藤正男

日本結晶学会誌 (2011) 53, 213-218.

 

(49)    “Crystallographic studies of heme oxygenase complexed with an unstable reaction intermediate, verdoheme”

Unno, M., Matsui, T., and Ikeda-Saito, M.

J. Inorg. Biochem. (2012) 113, 102-109.

 

(50)    “歪みで誘起される新たなヘム分解反応”

松井敏高

生物物理 (2014) 54, 104-105.