令和3年10月7日

Press Release

報道機関 各位

東北大学多元物質科学研究所

新たな動作原理による有機メモリ素子の開発に期待 ~イオンチャネルと強誘電体の共存によるスイッチング特性の向上~

【発表のポイント】

- <u>イオンチャネル^{注1}と強誘電体^{注2}</u>構造を分子集合体中で共存させることに成功した。
- イオン変位が新たな分極構造を誘起し、強誘電体メモリ^{注3}のスイッチング特 性を決定する重要なパラメータである残留分極値^{注4}を増加させた。
- チャネル内のイオンサイズによりイオン変位量が変化し、強誘電体の電場ー 分極曲線の残留分極値が制御可能であった。

【概要】

有機材料では有機合成化学の手法から多様な分子集合体構造が設計可能であ り、様々な機能を複合化することができます。東北大学多元物質科学研究所の原 国豪博士、芥川智行教授らは、イオンチャネル構造を有する液晶性<u>クラウンエー</u> <u>テル^{注5}</u>誘導体と液晶性強誘電体からなる混晶を作製し、<u>イオン伝導性^{注6}</u>と強誘電 性が共存した新規な分子集合体構造の開発に成功しました。本来、伝導性と強誘 電性は相反する性質と考えられてきましたが、強誘電体メモリとしての性能を 向上させる事がわかりました。分子集合体における多重機能性の実現は、新たな 動作原理によるフレキシブル有機メモリの開発を可能とし、その性能向上およ び次世代に有機エレクトロニクス創製に向けた新たな指針を提案します。

本研究の成果は英国現地時間の 2021 年 9 月 28 日、学術誌 *Chemical Science* に てオンライン掲載されました。

【問い合わせ先】	(報道に関すること)
東北大学多元物質科学研究所	東北大学多元物質科学研究所
教授 芥川 智行(あくたがわ ともゆき)	広報情報室
電話:022-217-5653	電話:022-217-5198
E-mail : akutagawa@tohoku.ac.jp	E-mail : press.tagen@grp.tohoku.ac.jp

【背景】

外場により化学結合の形成-解離が可能である分子間水素結合は、タンパク 質の二次構造などの生体構造の構築に関して重要な役割を果たしています。水 素結合性の分子集合体構造は、温度や電場などの外部エネルギーによりその構 造変化が誘起できることから、機能性有機材料の創製においても頻繁に利用さ れています。一方、生体内の脂質二分子膜に存在するイオンチャネルは生体情報 伝達に関与する重要な分子集合体であり、Na⁺やK⁺イオンの選択的なゲート輸送 を担っています。本研究グループでは、分子間水素結合に着目し、外部電場の印 加による水素結合反転を起源とする分極反転を用いた有機強誘電体を開発して きました。強誘電体では電場-分極(P-E)曲線にヒステリシスを示し、電場Eの 印加により分極Pがオン状態に変化し、電場を切っても残留分極値(Pr)が保持 されます。この性質を利用すると不揮発性強誘電体メモリが作成可能となり、ス マートカードなどでの実用化が進んでいます。より小さな外部電場でオン・オフ のスイッチングができ、より大きなPr値を持つ物質が優れたメモリ材料と言えま す。従って、強誘電体のP-E ヒステリシス曲線において抗電場(Et)を小さくし、 Prを大きくするための分子設計が有機強誘電体の設計における重要な視点とな ります。有機材料の合成による設計自由度の高さは、この様な問題を解決するの に有効な手法と考えられます。

【研究手法と成果】

側鎖に三本のアルキルアミド鎖を有するベンゼン誘導体(1)は、ディスコチ ックヘキサゴナルカラムナー (Colh) 液晶相^{注7}を示し、P-E曲線にヒステリシス を示す強誘電体となることが明らかにされています(図1)。N-H···O=アミド 水素結合を介した一次元カラム構造からなる1の分子集合体は、外部電場 E を カラムに水平な方向に加えると極性アミド基の向きが上下で反転します。これ が分極反転となり強誘電性が出現します。今回、同様なColh液晶性を示すことが 可能なクラウンエーテル誘導体(2)を新規に合成しました(図2)。分子2は側 鎖である四本のアルキルアミド基の分子間N-H···O=水素結合により一次元カ ラム構造を形成し、同時にクラウンエーテルの一次元的な積層によるイオンチ ャネル構造を発生させます。六個の酸素原子から構成される18-クラウン-6-エー テルは分子中心に空孔が存在し、その直径はK⁺イオンと良く適合することが知 られています。Na⁺イオンだと空孔サイズより小さく、Cs⁺イオンだと大きすぎる ことになります。イオンの組合せを変化させると、18-クラウン-6-エーテルが形 成するチャネル内のイオン運動の自由度を制御することが可能となります。チ ャネル内におけるイオン運動の自由度は、Na⁺>K⁺>>Cs⁺の順で減少します。実 際に、分子2のNa⁺、K⁺およびCs⁺錯体のイオン伝導性は、Na⁺塩で10⁻⁶S cm⁻¹(460 K)となり最も大きな値を示します。2の分子集合体は強誘電性を示さなかった ことから、分子1が形成する強誘電性液晶と2の非強誘電性液晶を混合したとこ ろ、同様なColh液晶相の形成と強誘電性の発現が確認できました(図2上)。一

般に、イオン伝導性と強誘電性は相反する性質であり、その共存に関する研究は あまり試みられてはきませんでした。今回、分子1の強誘電性の水素結合カラム と分子2のイオン伝導性の水素結合性カラムが共存する事で、イオン伝導性強誘 電体の開発に成功しました。イオンチャネル内のイオン変位は双極子モーメン トを変化させ、Na⁺ > K⁺ >> Cs⁺ の順でその値が減少することになります(図2 下)。分子1の強誘電性カラムから発生する残留分極 P_1 にチャネル内のイオン変 位から発生するイオン分極 P_{ion} が加わった $P_1 + P_{ion}$ が正味の残留分極値 P_r となり、 それがP-Eヒステリシス曲線に反映されることになります(図1下)。イオン変 位により分極値をブーストされた強誘電体が新たに設計可能となり、不揮発メ モリのスイッチング特性を支配する代表的な物理量である P_r 値の化学的な制御 が可能となりました。

【本研究の意義、今後への期待】

本来は相反する性質であるイオン伝導性と強誘電性は、有機材料の設計自由 度に着目した分子設計により互いに共存することが可能となります。イオンサ イズを変化させることでイオンチャネル内におけるイオン輸送特性が制御可能 となり、そのイオン変位の大きさに応じて、不揮発性メモリの重要な設計パラメ ータの一つである残留分極値 Prを増加させることが可能になります。現在実用 化されているPZTなどの多くの無機強誘電体材料が鉛などの毒性の高い重金属 を含むのに対して、環境に対する負荷の少ない軽元素から構成される有機強誘 電体は、低環境負荷でSDGsに配慮可能な新メモリ材料の創製に繋がると期待さ れています。フレキシブルで生体適合性に優れた有機メモリの開発は、次世代エ レクトロニクスに必要不可欠な新材料であると考えられます。

本研究は、科研費基盤研究(A)JP19H00886、学術変革領域(A) JP20H05865およびJST CREST研究 JPMJCR18I4による成果です。

【論文情報】

タイトル: Ion Polarisation-Assisted Hydrogen-Bonded Ferroelectrics in Liquid Crystalline Domain

著者: Guohao Yuan, Yuko Kimura, Takayuki Kobayashi, Takashi Takeda, Norihisa Hoshino, and Tomoyuki Akutagawa

掲載誌: Chemical Science

DOI: 10.1039/D1SC03301H

【用語説明】

注1. イオンチャネル

Na⁺やK⁺などの各種イオンを能動的・選択的に透過させることができる一次元構造であり、生体膜に存在するタンパク質です。活動電位の発生・受

容器電位の発生・静止膜電位の維持などに関与し、生体活動における重要 な役割を果たしています。この様なイオンチャネルを有機合成化学の手 法で人工的に実現する研究が数多く行われています。

注2. 強誘電体

外部に電場がなくても双極子モーメントが整列しており、かつその方向 が外部電場に対して反転できる物質です。双極子モーメントが自発的に 整列した状態が強誘電状態でランダムな状態が常誘電体となり、温度に より常誘電体-強誘電体相転移を示します。代表的な物質としてチタン 酸バリウム BaTiO₃ やチタン酸ジルコン酸鉛 Pb(Zr, Ti)O₃ (PZT) があり、 強誘電体メモリなどに使用されています。

注3. 強誘電体メモリ

FeRAMと呼ばれる不揮発性のメモリであり、強誘電体の電場-分極曲線 のヒステリシス(履歴)現象に依存した正負の残留分極(自発分極)をデ ジタルデータの1と0に対応させたメモリです。

注4. 残留分極值

強誘電体の表面に存在する単位体積当たりの電気双極子は、外部電場に 応じて正と負にその符号を変化する事ができ、それを自発分極と呼びま す。電場-分極ヒステリシス曲線で、外部電場を0にした時に表面に残っ ている分極の値を残留分極 *P*rとよび、外部電場により分極の符号が反転 できます。

注5. クラウンエーテル 構造式 (-CH₂CH₂O)_n で表される大環状のエーテル分子です。例えば、n= 6の分子は18-クラウン-6-エーテルと呼ばれます。エーテル環の内側に存 在する複数の酸素原子の非共有電子対が金属カチオンに配位し、安定に カチオンを取り込んだ包接構造を形成します。

注6. イオン伝導性 固体中におけるイオンの拡散による電気伝導性です。例えば、イオンチ ャネル内のイオン拡散はイオン伝導性を発現させることができます。電 子伝導性と比べるとその絶対値は小さいですが、Li⁺イオンやH⁺の伝導は 高性能なリチウムイオン電池や燃料電池の実現に重要な役割を果たして います。

注7. ディスコチックヘキサゴナルカラムナー (Colh) 液晶相

複数のアルキル鎖を側鎖に持つ盤状分子が一次元積層カラムを形成し、 それがヘキサゴナルに配列した分子集合体構造を有する液晶相です。熱 運動する一次元カラムのアルキル鎖は融解しており、カラム構造の重心 がヘキサゴナル格子を形成することで固相と液相の中間相である液晶状 態を形成しています。

図1 強誘電性液晶1とイオン伝導性液晶2の分子構造。アルキルアミド鎖間の 分子間N-H•••O=水素結合が一次元カラム構造を形成する。分子2ではクラウ ンエーテルの積層によるイオンチャネルが出現する。電場-分極ヒステリシス 曲線における抗電場(Ec)と残留分極値(Pr)。イオン変位による分極Pionと分子 1の真性分極P1の和がマクロな残留分極Prとして観測される。

図2 強誘電体カラムとイオン伝導性カラムがドメイン分離した Colh液晶相(左上)。Na⁺をチャネル内に導入した混晶(1)x(2)1-xの P-E 曲線の温度依存性(右上)。 チャネル内にランダムに存在するイオンが外部電場の印加によりイオン変位する。その変位量は Na⁺ > K⁺ > > Cs⁺の順で減少し、サイズの小さな Na⁺の場合に最もイオン変位が大きくなる(下図)。