Ni-Zn/TiO₂

Liquid-Phase Reductive Deposition as Novel Preparation Method of Hybrid Nano-particulate Catalysts

Hybrid Nano-Materials Research Center

Institute of Multidisciplinary Research for Advanced Materials Tohoku University, Sendai, JAPAN http://www.tagen.tohoku.ac.jp/

IMRAM, Tohoku Univ., Japan

BACKGROUND

🙀 IMRAM, Tohoku Univ., Japan

Supported catalysts

Metal particles are supported on a carrier. The carrier is a porous material.

Catalyst metal

Support (Carrier)

3

Problem

Relationship between preparation method and dispersity of metal

> Dispersity = surface metal / bulk metal

> It depends on metal size in general.

Effect of preparation method on average size of metals and their thermal stability.

A: impregnation method with H_2PtCl_6 B: ion exchange method with $[Pt(NH_3)_4]Cl_2$

Ref. H. Arai, Surface 17, 680 (1979).

Relationship between preparation method and dispersity of metal

Adsorption uptake of H and CO is in proportional to surface metal amounts.

Uptake : large ↓ Active surface area: large

Surface area became unchanged over a certain loading of Pt.

With increasing Pt, its size was increased.

Catalyst preparation methods

Impregnation

- Including incipient wetness method, etc.
- Immerse support materials in metal salt solution.
- Drying it up and calcining it well.
- Ion exchange
- Coprecipitation

Disadvantages

Impregnation

- Easy control for loading.
- Very difficult to decrease catalyst metal size.

Ion exchange

- Easy control for metal size.
- Very difficult to increase loading.

Loading is increased but size should be the same.

BACKGROUND

Selective Deposition Method

💈 IMRAM, Tohoku Univ., Japan

Selective Deposition

Control of complex form of noble metal solution

Adjust pH to form hydroxide complexes
ca. Pt(OH)₄ complex

Aging them at 100°C 2days

Formation of precursory complex

Formation of noble nanoparticles by reduction
Loading = 20 wt%, but ~1nm in size.

Selective Deposition of Noble Metal Nanoparticles on Well-Defined Oxide Particle and their Application to Hydrogenation Catalyst

Support:

Single-crystalline anatase-type TiO₂ Monodispersed particles prepared by the Gel-Sol method.

Selective Deposition Method

Table Catalytic properties of supported Pt nanoparticles.						
Support	Specific	Method	Pt	Particle	Dispersity	1-octene
	surface		loading	size	(H/M)	conversion
	area (m ²		(wt%)	(nm)		(%)
	g ⁻¹)					
TiO ₂ , ellipsoid (anatase)	37.5	This study	3.0	1.1	0.99	11.9
		This study	18.9	1.3	0.86	35.7
		Ion-exchange	3.6	1.4	0.98	3.7
		method				
		Impregnation	20.0	6.3	0.40	9.7
		method				
α -Fe ₂ O ₃ , ellipsoid (A)*	136	This study	22.0	2.0	0.09	4.6
SiO ₂	4.20	This study	13.6	10 - 50	0.31	5.0
(prepare by Stober method)						
$ZrO_{2}(B)^{**}$	118	This study	18.0	2.4	0.86	19.4
Al ₂ O ₃	156	This study	18.0	1.6	0.85	52.1
CSJ-ref. cat ALO6		Ion-exchange	3.0	1.2	1.00	10.6
		method	.			
		Impregnation	18.0	4.8	0.28	21.2
		method				

Selective Deposition method \rightarrow Highly dispersed catalysts with high loading

Challenging to prepare Ni nanoparticles

- Nanoparticles of noble metals can be obtained by Selective Deposition Method.
- But, Ni is well known as very difficult to make it nanometer size.
- Ni particles are easily aggregated each other.
- Conventional methods of catalyst preparation cannot give nanoparticles of Ni.

Difficulty to obtain Ni nanoparticles

Ni-Zn nanoparticles synthesized by Liquid Phase Reduction method

- Amorphous (contain :B)
- c.a. 5~10 nm
- High Surface Activity
 ⇒High catalytic activity
 ⇒Aggregation

As-prepared particles are rather unstable, since tremendous aggregation sometimes occurs in the solution.

Ni-Zn nanoparticles

Objective of this study

Objective

Reductive Selective Deposition of Ni-Zn Nanoparticles onto TiO₂ Fine Particles (ST01) in the Liquid Phase (Ni-Zn/TiO₂)

Catalytic activity measurements and characterizations of Ni-Zn/TiO₂ nanocomposite synthesized.

TiO₂, ST01

Experimental

Liquid Phase Reduction method

Dissolution of metal complex

Synthesis of metal nanoparticles by using the reduction agent

High recovery rate by easy method Nanoparticles can be directly obtained from any precursor compounds soluble in a specific solvent.

Ni source : Ni(AA)₂ (AA=CH₃COCHCOCH₃) Zn source : Zn(AA)₂ Reducing agent : NaBH₄

Experimental procedure

TiO₂=0.125g N₂ gas flow (30min, 82°C)

0.02mol·dm⁻³ NaBH₄ 10ml

$2Ni^{2+} + BH_4^- \rightarrow 2Ni + B^{3+} + 2H_2$

Catalytic activity measurement

Ni-Zn/TiO₂ nanocomposite

Catalytic activity measurement

 $+H_2$ \longrightarrow **n-Octane 1-Octene**

Simple method to characterize the condition of Ni.

Residual amount of Ni and Zn in the solution after synthesized the nanoparticles

Almost all metal was deposited on the TiO_2 supports.

💓 IMRAM, Tohoku Univ., Japan

21

Results and Discussion

HR-TEM images of Zn-Ni/TiO₂ nanocomposite

Average size: c.a.5-6nm

Average size: c.a.1-2nm

(a) Zn/Ni=0.2

(b) Zn/Ni=1.0

The particle size appears to decrease with increasing amounts of Zn added.

With increasing Zn, the size was decreased.

XRD profiles of Zn-Ni/TiO₂ nanocomposite

XPS profiles of Zn-Ni/TiO₂ nanocomposite

Surface: oxides

Ni

Ni Core: metal

79th ACS Colloid and Surface Science Symposium Results of EXAFS (Ni-Kedge)

XPS profiles of Zn-Ni/TiO₂ nanocomposite

The identification of Zn state is difficult in this experiment because the peak positions of Zn and ZnO in ESCA spectra are very close. \Rightarrow EXAFS

Results of EXAFS (Zn-K edge)

Hydrogenation catalytic activity measurement

 $Ni < Ni - Zn < Ni / TiO_2 < Ni - Zn / TiO_2$

IMRAM, Tohoku Univ., Japan 30

HR-TEM images of Ni-Zn/TiO₂ nanocomposite

Particle size: 5-6nm (Ni), 1-2nm (Ni-Zn) Heterogeneous nucleation Zn addition suppressed the growthchoku Univ., Japan

31

saturated adsorption amount

	saturated adsorption	saturated adsorption
	amount of $Ni(AA)_2$	amount of $Zn(AA)_2$
Ni only	1.3mmol/g	
Zn only		2.8mmol/g
Zn/Ni=1.0	2.0mmol/g	2.8mmol/g

Zn addition \rightarrow Ni(AA)₂ adsorption increased. **Increase in nucleation site** \rightarrow decrease in size.

FT-IR measurement of Ni-Zn/TiO₂ nanocomposite

Summary

- Ni-Zn nanoparticles was successfully deposited on the TiO_2 nanoparticles.
- Ni nanoparticles were found amorphous.
- The state of Nickel was metallic.
- The addition of Zinc

The particle size is decreased with increasing the Zn added.
The catalytic activity of Ni-Zn/TiO₂ was 3 times higher than unsupported Ni nanoparticles.
The amount of organic compound adsorbed was increased.
Zn addition plays an outstanding effect and stabilization of Ni nanoparticles by deposition onto TiO₂.

Our Papers

 Reduction Deposition of Ni-Zn Nanoparticles Selectively on TiO₂ Fine Particles in the Liquid Phase

- Hideyuki Takahashi,Yoji Sunagawa,Saratuya Myagmarjav,Katsutoshi Yamamoto,Nobuaki Sato,Atsushi Muramatsu
- Materials Transactions, 44(11), 2414-2416(2003)
- Characterization of the Ni-Zn/TiO₂ Nanocomposite Synthesized by the Liquid-Phase Selective-Deposition Method
 - Sarantuya Myagmarjav, Hideyuki Takahashi, Yoji Sunagawa, Katsutoshi Yamamoto, Nobuaki Sato, Eiichiro Matsubara, Atsushi Muramatsu
 - Materials Transactions, 45(7), 2035-2038(2004)

