Nano-material Processing and Surface Physical Chemistry

Atsushi Muramatsu

E-mail: mura@tagen.tohoku.ac.jp

Nanoparticles

Nanoparticles

- $10^{-9} \text{ m} = 1 \text{ nm}$
- Billionth.
- A particle is composed of several atoms.
- Characters are expected different from bulk.
- Number of surface atom becomes equal to that of bulk atom.

Classification of particles

4

Catalyst

Industrial catalyst activity, selectivity, life, treatment Design surface control bulk control Surface control • Metal catalyst \rightarrow species, valence, composition, size

Activity

- Turnover frequency an active site
 - Surface reaction rate at one active site
- The whole activity of catalyst

Dependent on the total surface Moreover, it strongly depends on the surface structure

Life

Catalyst life

- Maintain the same activity for a long time
- Life should more than 1 month.
- Loss of activity
 - as a result of sintering, change in characters, etc.

Selectivity

- Catalyst changes a specific reaction rate.
 - CO hydrogenation
 - Cu: CO + $2H_2 \rightarrow CH_3OH$
 - Ni: CO + $3H_2 \rightarrow CH_4 + H_2O$
 - Co, Fe: $6CO + 9H_2 \rightarrow C_6H_6 + 6H_2O$
 - Rh: $2CO + 2H_2 \rightarrow CH_3COOH$
 - $\blacksquare \text{Rh: } 2\text{CO} + 4\text{H}_2 \rightarrow \text{C}_2\text{H}_5\text{OH} + \text{H}_2\text{O}$
 - Of course, the reaction conditions affects the rate.

Size control

- The whole catalytic activity is enhanced by increase in the total surface area.
- TOF (Turnover Frequency) sometimes depends on the size.
 - Quantum effect.

Catalyst design

- Detailed characterization of surface
- Precise control of surface

 Control of nanostructure of the surface and its evaluation is important.

Classification of catalysts

- Homogeneous catalysts
 - Same phase \leftarrow reactant, catalyst, etc.
 - Ex. Acetic acid synthesis:
 - Rh complexes catalyst = liquid phase
- Heterogeneous catalysts
 - different phase
 - Ex. Solid catalysts
 - supported catalysts, unsupported catalysts

Supported catalysts **Čatalyst metal** Metal particles are supported on a carrier. The carrier is a porous material. Support (Carrier)

Supported metal catalysts

Supports

- Almost all supports are metal oxides.
- They have many pores.
- They have excellent tolerance against mechanical intention.

Catalyst metal

- They are well dispersed on the support.
- Their size is expected to be $1 \sim 2$ nm.
- But, $5 \sim 50$ nm is general for industrial catalysts.

Examples of supports : active carbons

Yashigara AC

Charcoal AC

Anthracic AC

Charcoal surface

Supported metal catalysts

Supports

- Almost all supports are metal oxides.
- They have many pores.
- They have excellent tolerance against mechanical intention.

Catalyst metal

- They are well dispersed on the support.
- Their size is expected to be $1 \sim 2$ nm.
- But, $5 \sim 50$ nm is general for industrial catalysts.

Surface structure

金属単結晶表面上の原子. Atoms of single crystalline metal surface

Surface structure

Adsorption and catalytic reaction

Adsorption
Physisorption 蠅的吸着 like a fly

week: always

Chemisorption 蚊的吸着 like a mosquito

strong: chemical bonding

Table Chemisorption and physisorption						
Features	Chemisorption	Physisorption				
Force	Chemical bond	van der Waals				
Place	Selective	nonselective				
Structure	Monolayer	Multilayer				
ΔH	10 ~ 100 k cal/mol	2~3 kcal/mol				
Activation energy	Large	Small				
Rate	Slow	Rapid				
Adsorption and desorption	sometimes irreversible	reversible				
Typical type	Langmuir	BET 25				

28nm

試料		比表面積 (m/g)	細孔容積(m l/g)			
		BET法	メソポア	ミクロポア	平均細孔直径	資料質量(g)
			10_3000 Å	<10Å		
1	活性炭A	1050	0. 56	0. 36	30	0. 200
2	活性炭B	1600	1. 48	0. 27	35	0. 210

- 但し、 P₀: 飽和蒸気圧
 - Vm: 単分子層吸着量、気体分子が固定表面で単分子層を 形成した時の吸着量
 - C: 吸着熱などに関するパロラメータ>0

この関係式はP/Po: 0.05~0.35の範囲でよく成立する

Adsorption to reaction

Ex: methanol synthesis Synthesis gas into methanol $CO + 2H_2 \rightarrow CH_3OH$

C=O: nondissociative adsorption. H-H: dissociative adsorption.

Surface reaction

- Irreversible path
 - in extremely low counteraction rate
 - Surface reaction often = rate determining
 - Surface reaction includes many steps.
 - Arrenius plot is useful to decide the ratedetermining step.

Ex: methanol synthesis

Synthesis gas into methanol $CO + 2H_2 \rightarrow CH_3OH$ **CO** $gas \rightarrow CO$ (chemisoption) H_2 gas \rightarrow H_2 (chemisoption) \rightarrow 2H (dissociative adsorption) $CO(ad.) + H \rightarrow CHO(ad.) < rate determining >$ $CHO(ad.) + H \rightarrow CH_2O(ad.)$ $CH_2O(ad.) + H \rightarrow CH_3O(ad.)$ $CH_3O(ad.) + H \rightarrow CH_3OH(ad.)$ $CH_3OH(ad.) \rightarrow (desorption) CH_3OH$
Activation energy Arrenius equation $k = A \exp\left(-\frac{E_a}{RT}\right)$

where A is frequency factor, E is activation energy.

Apparent activation energy Plot $\ln(k) = y$ axis, 1/T = x axis. Slope = Ea (apparent activation energy) Slope = E_a ln (k

Reaction path

When the rate-determining step is changes, the apparent activation energy is changed.

Catalytic reactions

Structure-sensitive or structure-insensitive

Insensitive
Surface area effect
Sensitive
Activity depends on size.
Higher in smaller size
Higher in larger size

Maximum in a specific size

表1 ターンオーバー額度 (TOF) と粒径との関係				
I型(TOF は粒径に依存しない)				
$2H_2+O_2\longrightarrow 2H_2O$	Pt/SiO2a)			
C_2H_4 , \bigcirc + H ₂ \longrightarrow C ₂ H ₆ , \bigcirc	$Pt/Al_2O_3^{b}$			
$ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\mathrm{Pt}/\mathrm{SiO}_2,\ \mathrm{Pt}/\mathrm{Al}_2\mathrm{O}_3^{o)}$			
$\bigcirc \longrightarrow \bigcirc + H_2$	Pt/Al ₂ O ₃ ^{d)}			
Ⅱ型(TOF は粒径が小さいほど大きい)				
$C_2H_6.\ C_3H_8\!+\!H_2\!\longrightarrow\!\!CH_4$	Ni/SiO2-Al2O3@, Pt-blackf)			
$\bigwedge + H_2 \longrightarrow CH_4, \ C_2 H_{4*} \ C_3 H_8$	Rh/Al ₂ O ₃ g ³			
$\bigcirc + H_s \longrightarrow \land \land \lor \land$	Pt/Al ₂ O ₃ h)			
$\begin{array}{c} C\\ C-C\\ -C\\ C\\ C$	$\mathrm{Pt}/\mathrm{Al_2O_3^{10}}$			
//// → () + H₂	$Pt/Al_2O_3^{j_2}$			
$C_3H_6+H_2 \longrightarrow C_3H_8$ 111期(TOF は数経が小さいほど小さい)	Ni/Al ₂ O ₃ ^{k)}			
C ₃ H ₄ +O ₃	Pt/Al _s O _s D			
$C_3H_6 + O_2 \longrightarrow CO_2$	Pt/Al ₂ O ₃ m)			
$CO + O_2 \longrightarrow CO_2$	Pt/SiO ₂ n)			
\bigcirc + H ₂ \longrightarrow $\land \land \land$	$\mathrm{Ph}/\mathrm{Al_2O_3^{o)}}$			
$CO + H_2 \longrightarrow CH_4$	Ni/SiO ₂ p)			
$CO+H_2 \longrightarrow C_sH_s$	Ru/Al ₂ O ₃ q), Co/Al ₂ O ₃ r)			
$CO+H_2 \longrightarrow C_2H_5OH$	Rh/SiO ₂ ^{s)}			
$N_2 + 3H_2 \longrightarrow 2NH_3$	Fe/MgOt)			
IV型 (TOF はある粒径で最大となる)*				
$H_2+D_2 \Longrightarrow 2HD$	Pd/C, Pd/SiO ₂ (13 Å) ^{u)}			
\bigcirc + H _a \longrightarrow \bigcirc	$\rm Ni/SiO_2~(12~{\rm \AA})^{\rm v})$			
\bigcirc + H ₂ \longrightarrow \bigcirc	Rh/SiO ₂ (18Å) ^{w)}			

*()内は最大の TOF を与える粒径.

(283): a) Adv. Catal., 20, 153, b) J. Catal., 5, 111 (1965), c) J. Catal., 6, 92 (1965); 85, 530 (1984), d) J. Catal., 5, 471 (1965), e) J. Phys. Chem., 70, 2257 (1965), f) J. Phys. Chem., 67, 841 (1963), g) J. Catal., 56, 21 (1979), h) 5th I.C.C., 695 (1972), i) J. Catal., 11, 35 (1968), j) 4th I.C.C., 286 (1971), k) Chem. Lett., 1983, 255, i) B (fL, 1979, 1646, m) J. Catal., 53, 366 (1978), n) J. Catal., 55, 361 (1978), n) J. Catal., 53, 366 (1978), n) J. Catal., 55, 335 (1969), q) J. Catal., 54, 419 (1981); 87, 27 (1984), p) J. Catal., 55, 335 (1969), q) J. Catal., 51, 365 (1978), r5, 333, 366 (1978), r) J. Catal., 51, 365 (1978), r5, 371 (1982); Bull. Chem. Soc. Jpn., 57, 393 (1924), r) J. Catal., 55, 78 (1984), s) Chem. Lett., 1984, 1607, t) J. Catal., 59, 130 (1975), u) J. Cat.C., 651 (1972), w) J. Catal., 69, 130 (1981).

Structure-insensitive reaction

ターンオーバー頻度 (TOF) と粒径との関係

I型(TOF は粒径に依存しない) $2H_2+O_2 \longrightarrow 2H_2O$ Pt/SiO₂^{a)}

Pt/Al₂O₃b)

Pt/SiO₂, Pt/Al₂O₃c)

Pt/Al₂O₃d)

Structure-sensitive reaction ターンオーバー頻度(TOF)と粒径との関係 II型(TOF は粒径が小さいほど大きい) Ni/SiO₂-Al₂O₃^{e)}, Pt-black^{f)} $C_2H_6, C_3H_8+H_2\longrightarrow CH_4$ $\wedge \wedge + H_2 \longrightarrow CH_4$, C_2H_6 , C_3H_8 $Rh/Al_2O_3g^{3}$ $] + H_2 \longrightarrow \bigwedge \bigvee$ Pt/Al₂O₃h) $C - C + H_2 \longrightarrow C - C - C + CH_4$ $Pt/Al_2O_3^{i}$ + H2 $Pt/Al_2O_3^{J}$

 $C_3H_6+H_2\longrightarrow C_3H_8$

Ni/Al₂O₃k)

Structure-sensitive reaction ターンオーバー頻度(TOF)と粒径との関係 III型(TOF は粒径が小さいほど小さい)

 $C_{3}H_{8}+O_{2}\longrightarrow CO_{2}$ $C_{3}H_{6}+O_{2}\longrightarrow CO_{2}$ $CO+O_{2}\longrightarrow CO_{2}$

$$\bigcirc$$
 + H₂ \rightarrow \land

 $CO + H_{2} \longrightarrow CH_{4}$ $CO + H_{2} \longrightarrow C_{n}H_{m}$ $CO + H_{2} \longrightarrow C_{2}H_{5}OH$ $N_{2} + 3H_{2} \longrightarrow 2NH_{3}$

 $Pt/Al_2O_3^{D}$ Pt/Al₂O₃m) Pt/SiO2n) Ph/Al₂O₃o) Ni/SiO₂^p $Ru/Al_2O_3^{q}$, $Co/Al_2O_3^{r}$ Rh/SiO₂^{s)} Fe/MgOt)

Structure-sensitive reaction

ターンオーバー頻度 (TOF) と粒径との関係 IV型 (TOF はある粒径で最大となる)*

Catalyst preparation

Method

- Impregnation
 - Including incipient wetness method, etc.
 - Immerse support materials in metal salt solution.
 - Drying it up and calcining it well.
- Ion exchange
- Coprecipitation

Disadvantages

- Impregnation
 - Easy control for loading.
 - Very difficult to decrease catalyst metal size.
- Ion exchange
 - Easy control for metal size.
 - Very difficult to increase loading.

Preparation and dispersity

Dispersity: ratio of surface metal number to that of bulk.

Dispersity depends on the average size of catalyst metal.

調製法と Pt/SiO₂ 触媒の分散度お よび熱安定性. Pt 2.5 wt%, Davison 70 シリカゲル, A:含浸法, H₂PtCl_e, B:イオン交換法, [Pt (NH₃)₄]Cl₂, 焼成温度は還元処理 前の温度. 荒井弘通,表面, 17, 680 (1979)

Preparation and dispersity

H, CO uptakes are proportional to number of surface atom.

H, CO uptakes are large.↓Active surface is large.

Control of dispersity (metal size)

- Disadvantages of conventional method
 - In order to increase dispersity, metal loading should be decreased.
 - To control 1~2 nm in size, loading is limited to be 3~5 wt% for Pt.
 - The whole catalytic activity depends on the metal loading. If possible, larger loading becomes higher activity for higher productivity.

Loading is increased but size should be the same.

Selective Deposition of Noble Metal Nanoparticles on Well-Defined Oxide Particle and their Application to Hydrogenation Catalyst

Support:

Single-crystalline anatase-type TiO₂ Monodispersed particles prepared by the Gel-Sol method.

Tadao SUGIMOTO and Atsushi MURAMATSU, IMRAM

Effect of pH on yields of Pt precursor (100°C, 2days) α_{1} -Fe₂O₂ 100 80 60 TiO₂ 40 20 Ο 6 Ο 2 4 8 10 12 14 pН

Effect of pH on adsorption of Pt ions (25°C, 2days)

Selective Deposition Method α-Fe₂O₃ 多結晶エリプソイド α-Fe₂O₃ 単結晶エリプソ

ZrO₂(A) Rough surfaces

ZrO₂(B) Smooth surfaces TiO_2

Table Catalytic properties of supported Pt nanoparticles.							
Support	Specific	Method	Pt	Particle	Dispersity	1-octene	
	surface		loading	size	(H/M)	conversion	
	area (m ²		(wt%)	(nm)		(%)	
	g ⁻¹)						
TiO ₂ , ellipsoid (anatase)	37.5	This study	3.0	1.1	0.99	11.9	
		This study	18.9	1.3	0.86	35.7	
		Ion-exchange	3.6	1.4	0.98	3.7	
		method					
		Impregnation	20.0	6.3	0.40	9.7	
		method					
α -Fe ₂ O ₃ , ellipsoid (A)*	136	This study	22.0	2.0	0.09	4.6	
SiO ₂	4.20	This study	13.6	10 - 50	0.31	5.0	
(prepare by Stober method)							
$ZrO_{2}(B)^{**}$	118	This study	18.0	2.4	0.86	19.4	
Al_2O_3	156	This study	18.0	1.6	0.85	52.1	
CSJ-ref. cat ALO6		Ion-exchange method	3.0	1.2	1.00	10.6	
		Impregnation method	18.0	4.8	0.28	21.2	

Selective Deposition method \rightarrow Highly dispersed catalysts with high loading

Au / hematite

10 nm

10 nm

Selective Reductive Deposition Method

(a)

Hematite

20wt% Ni/hematite

5wt%Ni/hematite25nm

Liquid-Phase Selective Reductive Deposition Method

$Ni-Zn/TiO_2$ (Zn/Ni=0.1)

Liquid-Phase Selective Reductive Deposition Method

Zn addition decreased the size.

Ni単独

Ni-Zn (Zn/Ni=0.1)

Liquid-Phase Selective Reductive Deposition Method

Zn/Ni=1.0

Zn/Ni=0.2

Very Hot Topic!

Visible light utilization —Preparation of Ti-O-S photocatalyst —

Muramatsu Lab. IMRAM, Tohoku Univ.