CO Hydrogenation to Organic Compounds over Ni-Zn Nanoparticles in Liquid-Phase

Atsushi MURAMATSU, Katsutoshi YAMAOTO, Hideyuki TAKAHASHI, Nobuaki SATO, and Shohei MAKIHARA Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Katahira, Aoba-ku, Sendai 980-8577, Japan

In our laboratory

Hybrid nanoparticles, nanocomposites

Novel synthesis method.
 Liquid-phase reduction
 Selective reductive deposition in liquid phase
 Their characterization

CO hydrogenation is one of the characterization methods. Activity and product distributions characteristics of metal particles.

Catalysts

Novel catalyst preparation is always required.
 Needs and seeds (break-through)
 Utilization of resources
 Every-time demand to get best activities!

Nano-sized catalyst Bimetallic or bimetal catalyst

Activity promotion Change of selectivity and so on

Objectives

- Highly active Ni-Zn nanoparticles is prepared as a hydrogenation catalyst by Liquid Phase Reduction method.
- Nanoparticle suspension is used as a CO hydrogenation catalyst. Their activities and selectivities are evaluated.
- 3 Laser Flash method is applied for new characterization technique for catalysts in the liquid-phase as a thermal diffusivity.

8th Japan-China Symposium on Coal and C1 Chemistry Catalyst Preparation

8th Japan-China Symposium on Coal and C1 Chemistry-

Primary particles = ca. 5nmAggregates = ca. 50 nm

8th<u>Japan-China Symposium on Coal</u> and C1 Chemistry**-**

CO hydrogenation

Reaction conditions

	Ni content/	Flow rate /ml / min			
	mol / l	\mathbf{H}_{2}	CO		
Case 1	0	7.5	7.5		
Case 2	0.005	7.5	7.5		
Case 3	0.0075	10.2	10.2		
Case 4	0.01	15.0	15.0		
Case 5	0.02	30.0	30.0		
Case 6	0.05	75.0	75.0		
Case 7	0.1	150.0	150.0		

Reaction temperature: 573 KReaction pressure: 1.5 MPaRevolving speed: 300 rpmW/F(catalyst weight/flow rate): 29.1 g-cat h / molZn/Ni: 0.2

0.005~0.01 mol/l -> active

10

8th Japan-China Symposium on Coal and C1 Chemistry-

Distribution

Ni content	Selectivity / %					
mol/l	methane	ethane	e thyle ne	propane	butane	CO ₂
0.005	38.4	3.7	0.5	1.0	1.5	38.9
0.0075	38.3	2.5	0.2	0.7	2.1	38.9
0.01	41.8	2.8	0.1	0.3	0.5	42.2
0.02	34.9	3.2	0.8	1.0	0.5	37.0
0.05	42.5	0.9	0.1	0.1	0.4	50.2
0.1	50.5	1.0	0.0	0.0	0.2	44.0
Ni content	Selectivity / %					
mol/l	me thanol	ethanol	acetone	1-propanol	2-propanol	
0.005	12.2	1.4	0.7	1.3	0.4	
0.0075	11.6	1.3	0.6	1.8	1.9	
0.01	11.2	0.2	0.0	0.1	0.0	
0.02	5.1	1.5	8.9	0.0	7.0	
0.05	3.0	0.3	0.2	0.4	0.2	
0.1	2.2	0.6	0.1	0.2	0.1	

CH₄, CO₂, CH₃OH were formed. $0.005 \sim 0.01 \text{ mol/l} \rightarrow \text{high selectivity to methanol}$

> Active in oxygenate production Dec. 10, 2004, Kitakyushu, Japan

8th Japan-China Symposium on Coal and C1 Chemistry=

Used Ni-Zn nanoparticles

Ni content : 0.01 mol/1 (Zn/Ni=0.2)

5~20nm nanoparticles

To measure thermal diffusivity of a liquid under atmospheric conditions

Features

- 1. Materials are necessary to absorb laser beam and to emit infrared light.
- 2. Caloric leak is limited.
- Light path is limited below
 0.5mm.
- 4. Impurities should be avoided.
- 5. One-dimensional heat transmission is needed.

8th Japan-China Symposium on Coal and C1 Chemistry-

Outline of Laser Flash Apparatus

Results

Consistent with literature

Success in precise measurement of a liquid

With increasing Ni-Zn particle amount, thermal diffusivity was increased linearly.
9 % increase was found for 0.1 mol/l particle suspension.

Summary

- 1. Ni-Zn bimetallic nanoparticles were prepared by liquid-phase reduction method.
- 2. They were found active for methanol synthesis in CO hydrogenation.
- 3. Even though the same contact time was chosen, the activity and selectivity of Ni-Zn nanoparticles was changed.
- 4. Thermal diffusivity of nanoparticle suspension was increased with increasing particle concentration.
- 5. Laser flash method to measure the thermal diffusivity was useful as a novel characterization technique for suspension catalysts.
- 6. Unfortunately the explanation of the solid concentration effect due to the thermal diffusivity was failed.

Next stage of this study

1. Try to explain the solid concentration effect by the stability of the suspension.

Dispersion and aggregation of particles

- 2. Promote the stability of Ni-Zn nanoparticles. Selective deposition of Ni-Zn onto TiO₂ nanoparticles
- 3. Enhance the activity and selectivity to oxygenates. Use of the adequate additives
- 4. Generalize the Laser Flash method.